
Rectification currents in two-dimensional artificial channels

Fabio Marchesoni1,2 and Sergey Savel’ev2

1Dipartimento di Fisica, Università di Camerino, I-62032 Camerino, Italy
2Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom

�Received 10 April 2009; published 17 July 2009�

Driven transport of noninteracting Brownian particles in two-dimensional asymmetric channels is investi-
gated by fully accounting for longitudinal and transverse diffusions. Bona fide two-dimensional rectification
effects are reported, which cannot be explained by an approximate Fick-Jacobs kinetics, such as the charac-
teristic curve of the current pumped by a transverse ac bias and the selective gating exerted by a transverse ac
bias on a driven longitudinal current. Possible experimental demonstrations of these effects in superconducting
devices are also discussed.
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I. INTRODUCTION

Transport of overdamped �massless� particles in channels
of finite cross section has become a hot topic in the technol-
ogy of both natural �1� and artificial microporous media �2�.
Due to transverse diffusion, i.e., diffusion orthogonal to the
channel axis, the particle current can strongly depend on the
actual channel geometry �3�.

In the following we consider for simplicity a two-
dimensional �2D� channel directed along the x axis and mir-
ror symmetric with respect to it. At equilibrium with tem-
perature T, a particle suspended inside such channel executes
a constrained 2D Brownian motion with coordinates r�
= �x ,y�, the transverse coordinate y being confined between
periodic boundaries �w�x� with w�x+xL�=w�x�. For narrow
channels, w�x��xL, and small-amplitude boundary modula-
tions, �w��x���1, one can assume that the probability density
of the particle is uniformly distributed along the y axis, so
that its reduced probability density P�x , t� obeys the Fick-
Jacobs �FJ� kinetic equation �4,5�,

�

�t
P�x,t� =

�

�x
D�x�� �

�x
+

VL��x�
kT

�P�x,t� . �1�

The problem of the correct x dependence of the diffusion
coefficient D�x� is still matter of debate �5–7�, but it has no
bearing on this work. Under the additional restrictions
�w��x���kT /FxL and �w��x���kT /GyL �8�, the effective po-
tential VL�x� can be written as the superposition,

VL�x� = − Fx − kT ln�2
kT

G
sinh

Gw�x�
kT

� , �2�

of a drift term corresponding to the longitudinal force F �9�
and a logarithmic term, linear in T, which depends on the
boundary and the transverse force G applied perpendicularly
to it �10�. For G→0 this second term boils down to the more
conventional “entropic” term −kT ln w�x� �4,5�.

The design and operation conditions of today’s artificial
channels are often incompatible with the assumptions of the
FJ kinetics �2�: �i� sharply tailored profiles with large �w��x��
are commonly adopted in current nanotechnology experi-
ments; �ii� effective rectification in asymmetric channels,
w�x−x0��w�−x−x0� for all x0� �0,xL�, requires sharply
modulated boundaries; and �iii� in the presence of external dc

or ac drives, as is often the case, transverse relaxation can
hardly be instantaneous. The analysis of Brownian transport
in a 2D channel must thus be pursued beyond the reduced FJ
theory.

This paper is organized as follows. In Sec. II we introduce
a simple model for a 2D asymmetric period channel with
reflecting walls. In Sec. III a dc drive, F, is applied to a
Brownian particle suspended in the channel; the particle mo-
bility in the opposite direction is computed as a function of
the drive amplitude and for different geometries of the chan-
nel unit cell. A comparison of the two mobility curves allows
us to predict intensity and orientation of the rocked ratchet
current induced by a low-frequency longitudinal ac drive. In
Sec. IV an ac drive, G, is applied perpendicularly to the
channel axis. The Brownian particle perceives an effective
one-dimensional �1D� pulsated ratchet, so that it gets recti-
fied in the direction opposite to the configuration of Sec. III.
The combination of longitudinal and transverse diffusions
determines the intensity of the directed current in the chan-
nel. In Sec. V the mobility of a longitudinally driven Brown-
ian particle in a perpendicularly pulsated channel is investi-
gated for different drive intensities and pulsation frequencies.
The ensuing gating current develops outstanding commensu-
ration peaks, which are the signature of the interplay of lon-
gitudinal and transverse forces. Possible applications to the
design and operation of superconducting devices are briefly
discussed in Sec. VI.

II. MODEL

The 2D dynamics of an overdamped Brownian particle is
represented by the Langevin equation

dr�/dt = − Fe�x − Ge�y + �kT���t� , �3�

where e�x ,e�y are the unit vectors along the x ,y axes and
���t�= ��x�t� ,�y�t�� are zero-mean white Gaussian noises with
autocorrelation functions

	�i�t�� j�t��
 = 2�ij��t − t��

for i , j=x ,y. The Langevin equation �Eq. �3�� has been nu-
merically integrated for different arrangements of the exter-
nal forces. Typically the longitudinal force was chosen con-
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stant and the transverse force was sinusoidally modulated in
time, G�t�=G cos��t�. The results reported here are re-
stricted to the case of reflecting boundaries �11�, described
by the piecewise linear function w�x�, with period xL and
maximum width yL, sketched in Fig. 1. The width of the
bottlenecks was kept narrow, ��yL. The degree of x→−x
asymmetry of the channel profile is controlled by the tunable
parameter x0 /xL� �0,0.5� �rhombic symmetric cells for
x0 /xL=0.5 and triangular cells for x0=0 �12��. By introduc-
ing dimensionless units, x→x /xL, y→y /yL, and t
→ �kT /xLyL�t, one proves that, for any given geometry, the
transport dynamics �Eq. �3�� is controlled solely by the res-
caled forces FxL /kT and GyL /kT and possibly by xLyL� /kT.
In our simulation the cell aspect ratio yL /xL was set to 1, with
xL=yL=1, so that neither FJ conditions apply.

III. ROCKED CHANNELS

We start our analysis with the simplest case of a purely
longitudinal steady flow driven by a dc force F in the ab-
sence of transverse bias, G=0. In Fig. 2 we plot the corre-
sponding mobility functions ����F�� defined as �+��F��
=��F� for F	0 and �−��F��=��−F� for F
0, with ��F�
=v /F and v�	ẋ
. In shorthand notation the �¯ � sign in ��

is dropped. Due to our channel geometry, �� represent the
mobilities in the easy and hard directions, respectively, that
is, �+�F���−�F� with �+�0�=�−�0�. Note that ���0� is al-
most independent of x0. As a consequence, a low-frequency
time periodic, say, sinusoidal force F�t�, would rectify the
particle motion in the easy direction �rocked ratchet �13��.
Note that for asymmetric channels, x0�0.5, �+��0�=−�−��0�
�0 �11�, hence the minimum of �− for 0�x0�0.5.

All curve pairs ���F� approach the expected asymptotic
value ����=1, with the exception of �− at x0=0. To clarify

this point we displayed here a pair of mobility curves for
x0�0 too: as F pushes in the hard direction, the particle gets
trapped inside the �x0� deep pockets above and below the
bottleneck �Fig. 1, top right inset�, so that �−�F� gets sup-
pressed by the Arrhenius factor exp�−Fx0 /kT� �14�. The �−
curve for x0=0 thus acts as a separatrix between the �−
curves pointing upward toward one, for x0�0, and those
decaying to zero for x0�0.

The F dependence of �−�F� at x0=0 is remarkable. We
found that it approaches the horizontal asymptote

�−�� = �/yL

with power law decay

�−�F� − �−�� � �kT/�F��1/2.

This behavior cannot be surely explained in terms of the FJ
kinetics �8�. A simple phenomenological argument convinced
us that our numerical findings were consistent. Subject to the
longitudinal force pointing in the negative direction, the par-
ticle gets pressed against the bottom of the triangular cell
�see the inset of Fig. 2�, where it keeps diffusing unhindered
in the transverse direction. After it eventually squeezed its
way around the edges of the opening, the particle hits the
bottom of the neighboring cell to its left in a time of the
order of xl / �F�. During its ballistic flight, however, the par-
ticle undergoes transverse diffusion and, upon hitting the bot-
tom of the cell, it will be scattered over a region of total
radius �+�T�F�, with

�T�F� � �2xLkT/�F� .

This is the effective radius of the bottleneck in the hard di-
rection corrected for thermal diffusion. In agreement with
our observations, �−�F�=� /yL+�T�F� /yL is then the frac-
tion of the particle actually being transported in the station-
ary regime.

As mentioned above the curves ��F� versus F /kT are
determined by the channel geometry alone. Moreover, ���0�
is weakly dependent on x0 at odds with predictions based on
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FIG. 1. �Color online� Brownian particle in a 2D periodic chan-
nel directed along the x axis and with periodically modulated
boundary w�x�= �yL−���x /x0�+� for 0�x�x0 and =yL− �yL

−���x−x0� / �xL−x0� for x0�x�xL. In our simulations the cell ge-
ometry was varied by changing x0 for fixed xL=yL=1 and �=0.1:
x0=0 �main panel�, 0.2 �bottom, right�, and −0.1 �top, right�. The
stationary distributions of a driven particle in one-cell reduced rep-
resentation �also called particle beam� are shown for F=2, G=5,
T=0.005, and ��=�6=6 �see text�.
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FIG. 2. �Color online� Mobilities �+ �open symbols� and �−

�solid symbols� versus F /kT in the periodic 2D channel of Fig. 1 for
G=0, T=0.1, and different values of the asymmetry parameter x0

�rocked channel�. The �� curves for x0=−0.1 are shown for a com-
parison. The dotted line represents the asymptote �−��=0.1 �see
text�. Inset: particle beam corresponding to the open circle on the
�− curve for x0=0.
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the FJ equation �Eq. �1�� �13�. We confirmed this observation
by looking at the mean first passage time � for an unbiased
particle placed in the midsection of a bottleneck to diffuse
across an adjacent bottleneck to its right or left alike. Our
numerical estimates for � satisfied the identity ���0�
=xL

2 /kT�, proved indeed proportional to kT, as expected, and
almost insensitive to x0.

IV. PULSATED CHANNELS

We consider now the case of a channel transversally bi-
ased by a sinusoidal force G�t� with frequency ��=� /2� in
the absence of longitudinal drives, F=0. In terms of the FJ
kinetic equation the particle would move in a ratchet poten-
tial VL�x� �Eq. �2��, subject to time pulsation with frequency
2�� �pulsated ratchet�: rectification would thus occur in the
hard direction and vanish for G→ �15�.

Our numerical simulation delivers a rather different pic-
ture. In Fig. 3 we only report data for the most asymmetric
channel geometry, x0=0. The curves of the net current v
versus G are indeed negative for all pulsation frequencies
but, when plotted in units of ��, their amplitudes exhibit a
sharp step at approximately the same G /�� and, for low ��,
approach the same horizontal asymptote v�� /��.

This behavior is a manifestation of the interplay of trans-
verse and longitudinal diffusions. The particle stands a better
chance to diffuse sidewise through the bottleneck to its left
during a half bias cycle if G is intense enough to squeeze it
toward the corners of the triangular channel cell. This hap-
pens when the amplitude of the free particle transverse os-
cillations equals the maximum width of the cell, namely, for
Gth /�=yL. For larger G, the particle is swept up and down
close to the flat bottom of the cell. If the particle is allowed
to diffuse distances longer than � during one half bias pe-
riod, then the argument introduced above to estimate �−��
applies again: the particle leaves the cell at each passage with
probability � /yL. In conclusion, we predict

v��/�� = − 2�xL/yL

for ���kT /�2. Both estimates for Gth and v�� agree quite
closely with the simulation data of Fig. 3 for low ��. On
increasing �� the steps at Gth get sharper, but for ���1 the
tail of v /�� approaches zero.

The bump appearing next to the onset step is a finite size
effect that depends on the details of the cell geometry. Finite
size effects are even stronger in the case of a square wave-
form, G�t�, with equal amplitude, G, and frequency, ��, as
proven by the steplike decay of v�G� in the inset of Fig. 3 for
large ��.

V. GATING IN PULSATED CHANNELS

We finally analyze the action of a periodic bias G�t� on
the dc driven along the asymmetric channel with x0=0. In
Fig. 4 we plot the mobilities �� versus �� at constants G and
F �panel �a�� and versus F at constants G and �� �panel �b��.
In FJ kinetic scheme �Eqs. �1� and �2�� the particle flow
across the channel bottlenecks would be subjected to the op-
timal gating condition �16� when the particle crosses a unit

0 5 10 15

-0.2

-0.1

0

0 10 20

-0.2

0

0.1

0.2

1

5

10

T = 0.01

v/
Ω

G/ν
Ω

0.1

10

ν

FIG. 3. �Color online� Net current v /�� vs G /�� in the channel
of Fig. 1 with x0=0 for F=0, T=0.01, and pulsated at different ��

�legends�. The dotted lines represent the horizontal asymptote
v�� /��=−0.2 for ���1 and the threshold Gth /��=2� �see text�.
Inset: same as in the main panel but for a square wave form of the
pulsation G�t�.
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FIG. 4. �Color online� Mobilities �+ �dots� and �+ �squares� in
the channel of Fig. 1 with x0=0 for different T; the channel is
subjected to a sinusoidal transverse force G�t� and a longitudinal dc
drive F �gating configuration�. �a� �� versus �� for G=5 and F
=2; �b� �� versus F for G=5 and ��=5. The predicted peak posi-
tions, �n and Fn, are marked by vertical arrows and dotted lines,
respectively, with the relevant index n. T values are 0.005 �solid
triangles and dashed-dotted curves�, 0.01 �empty triangles and dot-
ted curves�, 0.02 �solid squares and solid curves�, and 0.05 �empty
squares and dashed curves�. �Inset: low F details for two values
of T.�
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cell with ballistic time equal �or close� to an integer number
of half G periods. Consequently, on ignoring small noise
effects, �� peaks ought to occur for ��=�n in Fig. 4�a� and
F=Fn in Fig. 4�b�, with

�n = nF/2xL, Fn = 2xL��/n, n = 1,2, . . . . �4�

In our simulations, however, peaks corresponding to odd n in
both panels are strongly suppressed.

Gating is more effective in the hard direction, where, on
hitting the bottom of the cell, the particle gets sensibly de-
layed and therefore out of phase with G�t�. In the easy di-
rection the triangular boundaries of the cell act as a funnel,
thus refocusing the particle beam �i.e., the particle trajectory
in the one-cell reduced representation of Fig. 1�. As a conse-
quence the peak structures are less apparent for �+ than �−.

The peak structures grow more conspicuous either on
lowering the temperature or increasing the bias amplitude
�not shown�, being G /kT the effective control parameter. To
this regard, we notice that the particle traveling along the
channel tends to execute sinusoidal trajectories with ampli-
tude G /�; only those hitting the bottlenecks get hindered.
Therefore, the gating effect is expected to set on for G /�
��. �Note that in Fig. 4�b� G�3 and in Fig. 4�a� the �−
peaks vanish for ���8.� Moreover, as mentioned above,
during the ballistic traversal time xL / �F� the particle beam
widens with transverse diffusion radius �T. The beam radius
must be sensibly smaller than the bottleneck radius for gating
to become appreciable, �T��. This happens for

kT � kTc = ��F�/2xL��2.

�For the simulation parameters of Fig. 4�a� kTc=0.01.�
The �� curves in Fig. 4�b� cross one another for a certain

value of the longitudinal dc force, which can be interpreted
as a measure of the stopping force of the rectified current
pumped by G�t� at F=0 �Fig. 3�. Above the crossing point
�− turns upward and grows much larger than �−�0� at zero
bias, G=0 �Fig. 2�. Indeed, for ballistic traversal times much
longer than the bias period �i.e., for low dc drives�, the par-
ticle exits through the cell bottleneck regardless of the gating
conditions �Eq. �4��. A mobility enhancement is then ex-
pected for transverse modulations of the particle trajectory
larger the diffusive beam radius, namely, for F�Fc with
Fc=2xLkT�� /G�2, in close agreement with our simulation
data.

The suppression of the odd n peaks in panels �a� and �b�
of Fig. 4 is another typical property of the irreducible 2D
dynamics �Eq. �3��. When an unbiased particle beam enters a
triangular cell from the right, it splits in two parallel beams
as shown in the inset of Fig. 2. The bias G�t� deviates the
beams originating from the edges of the right bottleneck to
opposite transverse directions, so that they overlap in the
central lane of the channel upon entering the cell and, again,
after every full G�t� cycle. This means that they overlap also
at the center of the bottleneck on the left only for n even �see
Fig. 1�, thus producing large �− peaks, whereas for n odd
they hit the bottom of the cell and get blocked. As noticed

above, such a blocking action is less effective when the beam
travels from left to right; therefore, small �+ peaks are vis-
ible also for n even. Note that shrinking the opening, �→0,
while restoring ideal gating condition �4�, would dramati-
cally suppress �−.

The leftmost �� peaks in Fig. 4�a� seem to challenge this
rule, as they are centered in the vicinity of �1. In fact, this is
a finite size effect, which depends on the cell geometry. For
large G /�� the beams run parallel to the boundaries and then
refocus at the center of the cell bottom after a time not much
longer than one half bias period, i.e., for ����1. This and
more details will be discussed somewhere else.

VI. CONCLUSIONS

In this paper we have shown how the interplay of trans-
verse and longitudinal diffusions affects the particle current
flowing in an asymmetric periodic channel driven by exter-
nal forces either constant or periodic in time. We detected
boundary effects that cannot be reproduced in the context of
a reduced 1D kinetics at times not even qualitatively. Such
effects suggest design geometries and operation conditions
for artificial 2D channels, with applications to colloidal sys-
tems, cold atoms in optical lattices, and magnetic vortices in
superconducting devices to mention a few �2�.

Superconducting ratchet devices �17� are attracting grow-
ing interest because of their potential applications to the op-
eration of flux qubits as well as the suppression of magnetic
noise in active �e.g., superconducting quantum interferomet-
ric device �SQUIDs�� and passive �e.g., rf filters� supercon-
ducting devices. Vortex channels are ideal candidates to ex-
perimentally demonstrate the entropic transport effects
discussed in this paper. Indeed, artificial vortex ratchets can
be fabricated by etching asymmetric tracks of any shape on a
superconducting surface �18,19�. Magnetic vortices are
trapped in such channels with binding energies of the order
of �0

2Lt /�2, where �0 is the magnetic flux quantum, � is the
London penetration depth, and Lt is the depth of the channel.
The channel boundaries are as thin as one superconducting
coherence length �10 Å, which is by far the shortest
length scale in the system. Moreover, vortex densities can be
readily controlled by tuning an external out-of-plane mag-
netic field H. In the dilute limit, H��0 /�2, the vortex-
vortex interactions become negligible, so that the properties
of single particle transport in 2D are not overshadowed by
many-body effects. dc and ac drives can be easily imple-
mented as Lorentz forces generated by independently in-
jected currents either perpendicular or parallel to the vortex
channel, corresponding to the F and G drives, respectively,
introduced in our 2D channel geometries. Entropic rectifica-
tion can considerably improve both controllability and effi-
ciency of vortex ratchets.
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